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CHAPTER 1

High-dimensional geometry, estimation, and hope

Modern statistical learning often deals with high-dimensional data, such as genomic data, im-
ages, text, and time series, which all present challenges in terms of computational resources
and algorithm design. Even theoretically, algorithm performance should decline as dimension-
ality increases, a phenomenon known as the curse of dimensionality, caused by the geometric
behavior of high-dimensional spaces. As summarized by [Giraud, 2021, p.3] the impact of high
dimensionality on statistics is multiple.

• High-dimensional spaces are immense, with data points scattered widely.

• Small fluctuations in various directions can combine to create a significant overall change.

• A rare event resulting from the accumulation of many rare events may actually be common.

• Numerical computations and optimizations in high-dimensional spaces can be highly resource-
intensive

Even within each of these categories, the oddities of large dimension are multifaceted. We
will tour a few phenomena relevant for statistics. See also [Bar and Pozdnyakov, 2024] for more
advanced oddities.

1.1 Geometry of high-dimensional point clouds

1.1.1 Concentration of the norm
Many statistical and machine learning methods rely on local averages based on distances be-
tween sample points. We shall exemplify these in Section 1.2 later on. Naturally, these esti-
mators are only meaningful if the sample 𝑋1,… , 𝑋𝑛 is well-distributed in space. However, in
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6 CHAPTER 1. HIGH-DIMENSIONAL GEOMETRY, ESTIMATION, AND HOPE

high dimensions 𝐷 ≫ 1, this is generally not the case. We expect an iid sample to behave as
follows: all points lie on the same sphere, and are approximately equidistant from one another.
The proof relies on Hoeffding’s inequality (Theorem 1.1).

Lemma 1.1. (Thing shell phenomenon) Let 𝑋1,… , 𝑋𝑛 ∼iid Unif([0, 1]𝐷). Then:

(i) (Points nearly lie on a sphere) For all 𝜖 > 0,

ℙ(∀𝑖 ∈ {1,… , 𝑛}, (1 + 𝜖)
𝐷
3
≤ ‖𝑋𝑖‖2 ≤ (1 + 𝜖)

𝐷
3 )

−−−−→
𝐷→∞

1.

(ii) (Points nearly are equidistant) For all 𝜖 > 0,

ℙ(∀𝑖 ≠ 𝑖′ ∈ {1,… , 𝑛}, (1 + 𝜖)
𝐷
6
≤ ‖𝑋𝑖 − 𝑋𝑖′‖2 ≤ (1 + 𝜖)

𝐷
6 )

−−−−→
𝐷→∞

1.

The proof makes use of the following measure concentration inequality for sums of inde-
pendent bounded random variables.

Theorem 1.1. (Hoeffding’s inequality) If 𝑌1,… , 𝑌𝑁 are independent random variables such
that 𝑎𝑗 ≤ 𝑌𝑗 ≤ 𝑏𝑗 for all 𝑗 ∈ {1,… , 𝑁 }, then 𝑆 ∶= ∑𝑁

𝑗=1 𝑌𝑗 satisfies

ℙ (𝑆 > 𝔼[𝑆] + 𝑡) ≤ exp(
−2𝑡2

∑𝑛
𝑗=1(𝑏𝑗 − 𝑎𝑗)2)

.

Proof.

See [Boucheron et al., 2013, Section 2.6]

Proof of Lemma 1.1.

First fix 𝑖 ∈ {1,… , 𝑛}, and write 𝑋𝑖 = (𝑋𝑖,𝑗)𝑗∈{1,…,𝐷} with 𝑋𝑖,𝑗 ∼𝑖𝑖𝑑 Unif[0, 1]. The random
variables 𝑋 2

𝑖,𝑗 have mean 1/3 and take values in [0, 1]. Therefore, Hoeffding’s concentration
inequality (Theorem 1.1) yields

ℙ
(

|||||

𝐷

∑
𝑗=1

𝑋 2
𝑖,𝑗 −

𝐷
3

|||||
≥ 𝑠

)
≤ 2 exp(−

2𝑠2

𝐷 ) ,

for all 𝑠 ≥ 0. Picking 𝑠 = (𝐷/3)𝜖, the right-hand side equals exp(−2𝐷/9). Then, a union
bound over 𝑖 ∈ {1,… , 𝑛} gives a lower-bound the probability of the event of (i) equal to
1 − 𝑛 exp(−2𝐷/9), which goes to 1.

For point (ii), we let 𝑍𝑖,′𝑖 ,𝑗 ∶= (𝑋𝑖,𝑗 −𝑋𝑖′,𝑗)2. The random variables (𝑍𝑖,𝑖′,𝑗)𝑗∈{1,…,𝐷} are iid and
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take values in [0, 1]. Furthermore, 𝔼[𝑍𝑖,𝑖′,𝑗] = 1/6, so that by Hoeffding’s inequality,

ℙ(
||||
‖𝑋𝑖 − 𝑋𝑖′‖2 −

𝐷
6
||||
≥ 𝑠) ≤ 2 exp(−

2𝑠2

𝐷 ) .

Taking 𝑠 = (𝐷/6)𝜖 and using a union bound over (𝑖, 𝑖′) ∈ (𝐷2) allows to conclude.

Note that from the proof, we can actually strengthen the result by letting 𝑛 → ∞ as 𝐷 → ∞,
as soon as 𝐷 ≫ log 𝑛. In fact, we will see that the (apparently) critical dimension value 𝐷 ≃
log 𝑛 has connection with the so-called Johnson-Lindenstrauss lemma. It roughly states that the
metric structure of a set of 𝑛 points 𝑋1,… , 𝑋𝑛 ∈ ℝ𝐷 is essentially characterized by its projection
pr𝑉 (𝑋1),… , pr𝑉 (𝑋𝑛) onto a well-chosen (𝐶 log 𝑛)-dimensional subspace 𝑉 ⊂ ℝ𝐷.

1.1.2 Volume of high-dimensional balls
Another way to account for the weird immensity of ℝ𝐷 for large 𝐷 is to count the minimal size
𝑁 of a sample needed to cover the whole unit-cube [0, 1]𝐷, meaning that

[0, 1]𝐷 ⊂
𝑁

⋃
𝑖=1

B𝐷
2 (𝑥𝑖, 1).

Given such a covering with minimal cardinality 𝑁covering, a volume argument yields

1 = ||[0, 1]
𝐷|| ≤

|||||

𝑁covering

⋃
𝑖=1

B𝐷
2 (𝑥𝑖, 1)

|||||

≤
𝑁covering

∑
𝑖=1

||B
𝐷
2 (𝑥𝑖, 1)|| = 𝑁covering𝜔𝐷,

where𝜔𝐷 ∶= ||B
𝐷
2 (0, 1)|| is the volume of the𝐷-dimensional Euclidean ball. Hence, we necessary

have 𝑁covering ≥ 𝜔𝐷. It remains to understand how 𝜔𝐷 behaves as 𝐷 grows large.

Lemma 1.2. (Volume of the unit Euclidean ball) For all 𝐷 ∈ ℕ∗,

𝜔𝐷 =
𝜋𝐷/2

Γ (𝐷
2 + 1)

∼𝐷→∞
1√
𝜋𝐷 (

2𝜋𝑒
𝐷 )

𝐷/2

.

Proof.

The explicit formula for 𝜔𝐷 can be obtained by a change of variable, and by induction on 𝐷.
The asymptotic equivalent comes from Stirling’s formula Γ(𝑧) ∼𝑧→∞

√
2𝜋/𝑧 (

𝑧
𝑒)

𝑧
.
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Numerical application. The number of samples needed to cover [0, 1]𝐷 at a precision of 1
behaves thus roughly like𝐷𝐷/2, which is of course completely impractical. The bound𝑁covering ≥
1/𝜔𝐷 yields:

• for 𝐷 = 20, 𝑁covering ≥ 39;

• for 𝐷 = 30, 𝑁covering ≥ 45 631;

• for 𝐷 = 40, 𝑁covering ≥ 277 413 227;

which is already a huge size for a dataset. For theMNIST dataset, the dimension of the pictures
is 𝐷 = 784, and the resulting bound yields 𝑁covering ≳ 10653.

Remark 1.1. (Cube VS Euclidean balls in high dimension) The intuition of high dimension
is sharpened by considering the cube B𝐷

∞(0, 1) = [−1, 1]𝐷, for which:

• the ratio of the volume with the smallest Euclidean ball that contains it satisfies

|B𝐷
2 (0,

√
𝐷)|

|B𝐷
∞(0, 1)|

=
𝜔𝐷𝐷

𝐷
2

2𝐷
=

𝜋 𝐷
2 𝐷 𝐷

2

2𝐷Γ (𝐷
2 + 1)

∼
1√
𝜋𝐷 (

𝜋𝑒
2 )

𝐷
2
−−−−→
𝐷→∞

∞.

• the ratio of the volume with the largest Euclidean ball it contains satisfies

|B𝐷
∞(0, 1)|

|B𝐷
2 (0, 1)|

=
2𝐷

𝜔𝐷
=

2𝐷Γ (𝐷
2 + 1)

𝜋 𝐷
2

∼
√
𝜋𝐷(

2𝐷
𝜋𝑒)

𝐷
2

−−−−→
𝐷→∞

∞.

1.1.3 Spheres and gaussians
As a final example of a counter-intuitive phenomenon in high dimensions, let us turn towards
the uniform distributions over spheres. It appears that they have a representation based on
independent gaussian ingredients.

Proposition 1.1. (Gaussians and uniforms on spheres)

• Let 𝑍 = (𝑍1,… , 𝑍𝐷) be a ℝ𝐷-valued random variable. Then

𝑍 ∼  (0, 𝐼𝐷) ⟺ (𝑍/‖𝑍‖, ‖𝑍‖2) ∼ Unif (S𝐷−12 (0,
√
1)) ⊗ 𝜒 2(𝐷).

• If 𝑋 = (𝑋1,… , 𝑋𝐷) ∼ Unif(S𝐷−12 (0,
√
𝐷)), then for all fixed 𝑘 ≥ 1, the projection of 𝑋 over

the 𝑘-dimensional subspace 𝐸𝑘 ∶= ℝ𝑘 × {0}𝐷−𝑘 satisfies

pr𝐸𝑘(𝑋) = (𝑋1,… , 𝑋𝑘)⇝𝐷→∞  (0, 𝐼𝑘)

https://en.wikipedia.org/wiki/MNIST_database
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• 𝑋 ∼ Unif(S𝐷−12 (0, 1)), then for all fixed 𝜃 ∈ Unif(S𝐷−12 (0, 1)),
√
𝐷⟨𝜃, 𝑋⟩⇝𝐷→∞  (0, 1).

Proof.

The first point follows from the use of spherical coordinates 𝑒−‖𝑥‖2/2d𝑥 = 𝑟𝐷−1𝑒−𝑟2/2d𝑟d𝜃. For
the second point, use the representation 𝑋 =

√
𝐷𝑍/‖𝑍‖ with 𝑍 ∼  (0, 𝐼𝐷). As (𝑍1,… , 𝑍𝑘) ∼

 (0, 𝐼𝑘) and
√
𝐷/‖𝑍‖ 𝑎.𝑠.−−−−→

𝐷→∞
1 by the law of large numbers, Slutsky’s lemma yields

pr𝐸𝑘(𝑋) = (𝑋1,… , 𝑋𝑘) =
√
𝐷

‖𝑍‖
(𝑍1,… , 𝑍𝑘)⇝𝐷→∞  (0, 𝐼𝑘)

The third point is an application of the second one with 𝑘 = 1.

The above result has a direct consequence in terms of concentration around hyperplanes.

Proposition 1.2. (Concentration around equator and orthogonality in high dimension)

• Let 𝑋 ∼ S𝐷−12 (0, 1). Given fixed 𝜃 ∈ S𝐷−12 (0, 1), write 𝐻𝜃 ∶= span(𝜃)⟂ for the hyper-
plane orthogonal to 𝜃. Then when 𝐷 → ∞, 𝑋 is concentrated around the equator 𝐸𝜃 ∶=
𝐻𝜃 ∩ S𝐷−12 (0, 1) orthogonal to 𝜃. That is for all 𝑟 ≥ 0,

ℙ (dist(𝑋,𝐻𝜃) ≥ 𝑟/
√
𝐷) −−−−→𝐷→∞

ℙ(|𝑍 | ≥ 𝑟) ≤ 𝑒−𝑟
2/2,

where 𝑍 ∼  (0, 1).

• Let 𝑋, 𝑌 ∼ S𝐷−12 (0, 1) be independent. Then when 𝐷 → ∞, they are almost orthogonal.
That is, for all 𝑟 ≥ 0,

ℙ (|⟨𝑋, 𝑌 ⟩| ≥ 𝑟/
√
𝐷) −−−−→𝐷→∞

ℙ(|𝑍 | ≥ 𝑟) ≤ 𝑒−𝑟
2/2,

where 𝑍 ∼  (0, 1).

The first point can intuitively be understood from the fact that in high dimension, 𝑋 ∈
S𝐷−12 (0, 1) has more and more space to be far from 𝜃, and is hence almost orthogonal to 𝐻𝜃.
Proof.

Since dist(𝑋,𝐻𝜃) = |⟨𝜃, 𝑋⟩|, the first point follows from the third point Proposition 1.1. The
second one is deduced after applying the first one conditionally on 𝑌 (or equivalently by
applying Fubini-Tonelli).
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1.2 Statistical curse of dimensionality

1.2.1 Non-parametric regression
Assume that we observe iid couples of random variables (𝑋1, 𝑌1),… , (𝑋𝑛, 𝑌𝑛) ∈ [0, 1]𝐷 × ℝ with
𝑌𝑖 = 𝜂(𝑋𝑖) + 𝜀𝑖 and unknown regression function 𝜂 ∶ [0, 1]𝐷 → ℝ to estimate. To estimate 𝜂(𝑥)
for a given 𝑥 ∈ [0, 1]𝐷, a simple strategy consists in doing a weighted average of the output
values 𝑌𝑖’s associated to inputs 𝑋𝑖’s nearby 𝑥 . The notion of “𝑋𝑖 close to x” can, for instance, be
measured through a user-defined bandwidth parameter ℎ > 0, or a number 𝑘 of neighbors to
take into account. The two associated estimators are:

• The Nadaraya-Watson estimator

�̂�NWℎ (𝑥) ∶=
∑𝑛

𝑖=1 𝐾 ( 𝑥−𝑋𝑖
ℎ ) 𝑌𝑖

𝐾 ( 𝑥−𝑋𝑖
ℎ )

,

where ℎ > 0 is a bandwidth and 𝐾 ∶ ℝ𝐷 → ℝ is a kernel.

• The Nearest neighbors estimators

�̂�(NN)𝑘 (𝑥) ∶=
1
𝑘

∑
𝑖∈𝑁𝑘(𝑥)

𝑌𝑖,

where 𝑘 ∈ ℕ is a number of neighbors, and 𝑁𝑘(𝑥) is the index set of the 𝑗 nearest neighbors
of 𝑥 ∈ ℝ𝐷 among {𝑋1,… , 𝑋𝑛}.

Let us develop on the later strategy by providing an integrated error bound on the nearest-
neighbors estimator. See Figure 1.1 for a visual representation of the estimator.

Proposition 1.3. (Risk bound for nearest-neighbors regressor) We observe pairs (𝑋𝑖, 𝑌𝑖)𝑖≤𝑛
with 𝑌𝑖 = 𝜂(𝑋𝑖) + 𝜖𝑖. Assume that:

• (Design) 𝑋1,… , 𝑋𝑛 ∼𝑖𝑖𝑑 𝑃𝑋 = 𝑓 (𝑥)d𝑥 with 𝑓 ∶ [0, 1]𝐷 → ℝ+ such that inf[0,1]𝐷 𝑓 ≥ 𝑎 > 0.

• (Noise) 𝜖1,… , 𝜖𝑛 are independent centered random variables, independent of the design
points 𝑋1,… , 𝑋𝑛, and with equal variance 𝔼[𝜖2𝑖 ] = 𝜎2.

• (Smoothness) 𝜂 ∶ [0, 1]𝐷 → ℝ is 𝐿-Lipschitz.

For all 𝑥 ∈ [0, 1]𝐷 and 𝑘 ∈ ℕ, let

�̂�(NN)𝑘 (𝑥) ∶=
1
𝑘

∑
𝑖∈𝑁𝑘(𝑥)

𝑌𝑖

be the 𝑘-nearest neighbor regressor.
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Figure 1.1: A nearest neighbor regressor in dimension 𝐷 = 1.

• For all 𝑛 ≥ 1, we have

𝔼 [(�̂�(NN)𝑘 (𝑥) − 𝜂(𝑥))2] ≲
𝐷𝐿2 + 𝜎2

𝑘
+(

𝑘
𝑎𝜔𝐷𝑛)

2/𝐷

,

up to a numeric constant. Choosing 𝑘 = 𝑛2/(2+𝐷) hence yields

𝔼 [(�̂�(NN)𝑘 (𝑥) − 𝜂(𝑥))2] ≲ 𝑛−2/(2+𝐷),

up to a constant depending on 𝑎, 𝐿, and 𝐷.

• This rate is minimax-optimal, in the sense that no estimator can do better simultaneously
for all 𝐿-Lipschitz regression functions. That is,

inf
�̂�𝑛

sup
𝜂∈Lip𝐿([0,1]𝐷)

𝔼 [(�̂�𝑛(𝑥) − 𝜂(𝑥))2] ≳ 𝑛−2/(2+𝐷),

where �̂�𝑛 ranges among all the possible estimators based on a 𝑛-sample (𝑋1, 𝑌1),… , (𝑋𝑛, 𝑌𝑛).

Proof.

Write 𝕏𝑛 ∶= (𝑋1,… , 𝑋𝑛). First, apply a bias-variance decomposition conditioned on the
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design 𝕏𝑛 to get

𝔼(�̂�𝑘(𝑥) − 𝜂(𝑥))2 = 𝔼 [𝔼 [(�̂�𝑘(𝑥) − 𝜂(𝑥))2 ∣ 𝕏𝑛]] .

= 𝔼
⎡
⎢
⎢
⎣
𝔼
⎡
⎢
⎢
⎣
(
1
𝑘

𝑘

∑
𝑖=1

(𝜂(𝑋(𝑖)) − 𝜂(𝑥)) +
1
𝑘

𝑘

∑
𝑖=1

𝜖(𝑖))

2||||||
𝕏𝑛

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦
.

= 𝔼[𝑏𝑥(𝕏𝑛)2] +
𝜎2

𝑘
,

where 𝑏𝑥(𝕏𝑛) ∶= 1
𝑘 ∑

𝑘
𝑖=1 𝜂(𝑋(𝑖))−𝜂(𝑥). Now analyzing the bias term, we use the Lipschitzness

of 𝜂 to get

|𝑏𝑥(𝕏𝑛)| ≤
1
𝑘

𝑘

∑
𝑖=1

|𝜂(𝑋(𝑖)) − 𝜂(𝑥)| ≤ 𝐿‖𝑋(𝑘) − 𝑥‖.

Let now 𝜀 > 0 be such that 𝑝 ∶= ℙ(𝑋1 ∈ B𝐷
2 (𝑥, 𝜀)) satisfies 𝑘 ≤ 𝑛𝑝/2. Since 𝑓 ≥ 𝑎 on [0, 1]𝐷,

this is always possible as soon as 𝑎𝜔𝐷(𝜖/2)𝐷 ≥ 2𝑘/𝑛. Using Tchebychev’s inequality, we get

ℙ (‖𝑋(𝑘) − 𝑥‖ > 𝜀) = ℙ(Card(𝕏𝑛 ∩ B(𝑥, 𝜀)) < 𝑘)
= ℙ (Bin(𝑛, 𝑝) − 𝑛𝑝 < (𝑘 − 𝑛𝑝/2) − 𝑛𝑝/2)
≤ ℙ (|Bin(𝑛, 𝑝) − 𝑛𝑝| > 𝑛𝑝/2)

≤
4
𝑛𝑝

≤
2
𝑘
.

Writing 𝜀𝑘 ∶= 2(2𝑘/(𝑎𝜔𝐷𝑛))1/𝐷, we can hence bound the bias term by

𝔼 [‖𝑋(𝑘) − 𝑥‖2] ≤ 𝜀2𝑘ℙ (‖𝑋(𝑘) − 𝑥‖ ≤ 𝜀𝑘) + 𝐷ℙ (‖𝑋(𝑘) − 𝑥‖ > 𝜀𝑘)
≤ 𝜀𝑘 + 2𝐷/𝑘,

wherewe used that ‖𝑋(𝑘)−𝑥‖2 ≤ diam([0, 1]𝐷)2 = 𝐷 almost surely, which ends the proof of the
upper bound. The minimax-optimality is out of the scope of this class. See [Tsybakov, 2008,
Section 2.6.1] for the proof of the last statement, called a minimax lower bound.

Remark 1.2. (Numerical application for MNIST dataset) For the MNIST dataset ambient
dimension is 𝐷 = 28 × 28 = 784, and sample size is 𝑛 = 60 000. For the nearest neighbor
or kernel density estimation (KDE), the optimal rate of convergence is given by 𝑛−2/(𝐷+2) =
60 000−2/786 ≃ 0.968. This result indicates that the convergence rate for high-dimensional
data likeMNIST is incredibly slow, showing that we are far from the 95% accuracy achieved
by modern deep learning techniques like [LeCun et al., 1998].

Smoothness to overcome the curse of dimensionality Statisticians have introduced var-
ious approaches to address the curse of dimensionality. One key approach leverages smooth-
ness. The result of Proposition 1.3 can be extended to 𝛽-Hölder densities with arbitrary 𝛽 > 0,
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yielding a convergence rate of order 𝑛−2𝛽/(2𝛽+𝐷). When 𝛽 scales with 𝐷, specifically 𝛽 = 𝛼𝐷
(i.e., the true regression function is highly smooth), the rate simplifies to 𝑛−2𝛼/(2𝛼+1), which is
independent of 𝐷. Thus, the curse of dimensionality is effectively mitigated, but at a high cost
: a very stringent smoothness assumption.

1.2.2 High-dimensional linear regression
Even for parametric problems such as linear regression, high dimensions affects the behavior
estimators and risk. Consider a linear regression model 𝑌𝑖 = ⟨𝛽∗, 𝑋𝑖⟩ + 𝜖𝑖, where 𝛽∗ ∈ ℝ𝐷 is
unknown parameter. Using notation from Section 1.2.1, this amounts to restricting ourselves
to regression functions 𝜂 ∶ ℝ𝐷 → ℝ among the parametric family (⟨𝛽, ⋅⟩)𝛽∈ℝ𝐷 . The data consists
of

• Thedesignmatrix𝑋 = (𝑋⊤
1 |⋯ |𝑋⊤

𝑛 )⊤ ∈ ℝ𝑛×𝐷, where each row corresponds to a sample𝑋𝑖 ∈ ℝ𝐷,

• The response vector 𝑌 = (𝑌1,… , 𝑌𝑛) ∈ ℝ𝑛,

• The noise vector 𝜖 = (𝜖1,… , 𝜖𝑛) ∈ ℝ𝑛, where the 𝜖𝑖’s are centered independent real-valued
variables with common variance 𝜎2.

The model writes matricially as
𝑌 = 𝑋𝛽∗ + 𝜖.

The least squares estimator
𝛽LS ∈ argmin

𝛽∈ℝ𝐷
‖𝑌 − 𝑋𝛽‖2.

On data, the predicted (or denoised) points are 𝑌 ∶= 𝑋𝛽. See Figure 1.2. One can easily give
an explicit formula for the error made

Proposition 1.4. (Prediction risk for linear least squares) Adopt the above notation, with 𝑋
deterministic.

• The least-squares estimator satisfies

𝔼[‖𝑋𝛽LS − 𝑋𝛽∗‖2] = 𝜎2rank(𝑋),

with rank(𝑋) taking value up to min{𝑛, 𝐷}.

• This risk is minimax optimal when 𝜖 ∼  (0, 𝜎2𝐼𝐷).

Proof.

By construction, 𝑋𝛽LS corresponds to the orthogonal projection of 𝑌 onto the image (or
column space) of 𝑋 , i.e. 𝑋𝛽LS = prIm𝑋 (𝑌 ). Hence,

𝑋𝛽LS − 𝑋𝛽∗ = prIm𝑋 (𝑋𝛽∗ + 𝜖) − 𝑋𝛽∗ = prIm𝑋 (𝜖).
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Figure 1.2: Least squares regression in dimension 𝐷 = 1. Vertical lines correspond to the
(signed) residuals ⟨𝑋𝑖, 𝛽 − 𝛽∗⟩.

Furthermore, 𝜖 is as centered random variable with covariance matrix 𝜎2𝐼𝐷, and hence

𝔼[‖𝑋𝛽LS − 𝑋𝛽∗‖2] = 𝔼[‖prIm𝑋 (𝜖)‖
2]

= Tr (prIm𝑋 (𝜎
2𝐼𝐷)pr⊤Im𝑋)

= 𝜎2Tr(prIm𝑋 )
= 𝜎2rank(𝑋).

The proof of the minimax bound can be found in [Mourtada, 2022]
Here, the risk (in fact, variance) can hence scale linearly with the dimension 𝐷. This phe-

nomenon is another example of curse of dimensionality: as 𝐷 increases, the performance of the
least-squares estimator degrades, and we needmore data to achieve a low error. Evenmore crit-
ically, when 𝐷 ≥ 𝑛, the model with overfit the noise (i.e. 𝑌 = 𝑌 ), leading to poor generalization
on new data.

Sparsity to overcome the curse of dimensionality In high-dimensional settings, methods
like regularization (e.g., ridge regression or LASSO) constrain the size of the coefficient estimates
and controlling overfitting. For instance, one can impose sparsity on the model, assuming that
only a small subset of the features (𝑋 (1)|… |𝑋 (𝐷)) actually influence the response variable 𝑌 . In
the linear regression model, this means that only a few coefficients (𝛽∗

1 ,… , 𝛽∗
𝐷) are non-zero.

One may hence restrict 𝛽 ∈ ℝ𝐷 to have at most 𝑑 ≪ 𝐷 non-zero entries. The sparse estimator
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is given by
𝛽𝑑 ∈ argmin

‖𝛽‖0≤𝑑
‖𝑌 − 𝑋𝛽‖22,

where ‖𝛽‖0 ∶= ∑𝐷
𝑖=1 𝟏𝛽𝑖≠0. Theoretical bounds for this estimator are challenging to derive, but

adding an 𝓁0-penalty leads to the estimator

𝛽𝑑 ∈ argmin
‖𝛽‖0≤𝑑

{
‖𝑌 − 𝑋𝛽‖22 + 𝜆‖𝛽‖0

}
,

for some 𝜆 > 0. In this case, the following risk bound holds.

Theorem 1.2. ([Giraud, 2021, Theorem 2.2]) There exists a constant 𝐶 depending on 𝜆, such
that if ‖𝛽∗‖0 ≤ 𝑑, then

𝔼[‖𝑋𝛽𝑑 − 𝑋𝛽∗‖22] ≤ 𝐶𝜎2𝑑 log𝐷.

Comparing with Proposition 1.4, the dependence on the dimension is reduced from 𝐷 to
𝑑 log𝐷, which is a significant improvement when 𝑑 ≪ 𝐷. Here, the curse of dimensionality is
effectively mitigated, but at two high costs :
• a stringent sparsity assumption on 𝛽∗, imposing a very specific structure of 𝑌 ∣ 𝑋 in the
coordinate system given by 𝑋 (not invariant by transformations of 𝑋 );

• a high computational cost, since evaluating 𝛽𝑑 requires computing (𝐷𝑑) ≃ 𝐷𝑑 least squares es-
timators, which is in effectively prohibitive. This computational cost can however be reduced
drastically, by using a convexified 𝓁1-norm penalisation ‖𝛽‖1.

1.2.3 Non-parametric density estimation
It appears that the curse of dimensionality is ubiquitous in high-dimensional inference, no mat-
ter the quantity to estimate. We conclude this section by considering the density estimation
problem, with a result similar to Proposition 1.3. See Figure 1.3 for a visual representation of
the estimator.

Proposition 1.5. (Kernel density estimation) We observe variables (𝑋𝑖)𝑖≤𝑛. Assume that:

• (Design) 𝑋1,… , 𝑋𝑛 ∼𝑖𝑖𝑑 𝑃𝑋 (d𝑥) = 𝑓 (𝑥)d𝑥;

• (Smoothness) 𝑓 ∶ ℝ𝐷 → ℝ is 𝐿-Lipschitz and bounded by 𝐶.

Let 𝐾 ∶ ℝ𝐷 → ℝ+ be a kernel such that support(𝐾) ⊂ B𝐷
2 (0, 1),

�
𝐾(𝑧)d𝑧 = 1, and 𝑣𝐾 ∶=�

𝐾(𝑧)2d𝑧 < ∞. The task is to estimate 𝑓 at some point 𝑥 ∈ (0, 1)𝐷. For all 𝑥 ∈ [0, 1]𝐷 and
ℎ > 0, let

̂𝑓 (KDE)
ℎ (𝑥) ∶=

1
𝑛ℎ𝐷

∑
𝑖∈𝑁𝑘(𝑥)

𝐾 (
𝑥 − 𝑋𝑖

ℎ )
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Figure 1.3: A kernel density estimation in dimension 𝐷 = 1, with triangular kernel 𝐾(𝑥) =
(1 − |𝑥 |)+.

be the kernel density estimator with kernel 𝐾 and bandwidth ℎ.

• For all 𝑛 ≥ 1, we have

𝔼 [(
̂𝑓ℎ(𝑥) − 𝑓 (𝑥))

2

] ≤ 𝐿2ℎ2 +
𝐶𝑣𝐾
𝑛ℎ𝐷

.

Choosing ℎ = 𝑛−1/(2+𝐷) hence yields

𝔼 [(
̂𝑓ℎ(𝑥) − 𝑓 (𝑥))

2

] ≲ 𝑛−2/(2+𝐷).

• This rate is minimax-optimal, in the sense that no estimator can do better simultaneously
for all 𝐿-Lipschitz density functions. That is,

inf
̂𝑓𝑛

sup
𝑓 ∈Lip𝐿([0,1]𝐷)

𝔼𝑓 [(
̂𝑓𝑛(𝑥) − 𝑓 (𝑥))2] ≳ 𝑛−2/(2+𝐷),

where ̂𝑓𝑛 ranges among all the possible estimators based on a 𝑛-sample 𝑋1,… , 𝑋𝑛.

Proof.
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Start with the standard bias-variance decomposition

𝔼 [(
̂𝑓ℎ(𝑥) − 𝑓 (𝑥))2] = (𝔼[

̂𝑓ℎ(𝑥)] − 𝑓 (𝑥))
2
+ Var( ̂𝑓ℎ(𝑥)).

• (Variance term) Since ̂𝑓ℎ(𝑥) is a sum of i.i.d. random variables, its variance is

Var( ̂𝑓ℎ(𝑥)) =
1

𝑛ℎ𝐷
Var(𝐾 (

𝑋 − 𝑥
ℎ ))

≤
1

𝑛ℎ𝐷
𝔼
[
𝐾 (

𝑋 − 𝑥
ℎ )

2

]

≤
𝐶𝑣𝐾
𝑛ℎ𝐷

,

where the last line uses the fact that 𝑓 ≤ 𝐶, and a change of variables, 𝑦 = (𝑧 − 𝑥)/ℎ.

• (Bias term) The same change of variables yields

𝔼[ ̂𝑓ℎ(𝑥)] − 𝑓 (𝑥) =
�
B(𝑥,ℎ)

𝐾 (
𝑧 − 𝑥
ℎ ) (𝑓 (𝑧) − 𝑓 (𝑥))𝑑𝑧

=
�
𝐵(0,1)

𝐾(𝑦)(𝑓 (𝑥 + ℎ𝑦) − 𝑓 (𝑥))𝑑𝑦.

Since 𝑓 is 𝐿-Lipschitz, the bias term is bounded by

|𝔼[ ̂𝑓ℎ(𝑥)] − 𝑓 (𝑥)| ≤ 𝐿ℎ
�
𝐵(0,1)

𝐾(𝑦)‖𝑦‖𝑑𝑦 ≤ 𝐿ℎ.

Squaring both sides gives the result.

1.3 Manifold hypothesis
Despite the aforementioned curse of dimensionality, many — sometimes simple and computa-
tionally inexpensive — algorithms performwell on high-dimensional data, revealing a clear gap
between their empirical success and theoretical expectations.

1.3.1 Differential geometry
Loosely spearking, a submanifold of ℝ𝐷 is a topological space that locally resembles a Euclidean
space of dimension 𝑑 ≤ 𝐷. It can be thought of as a generalized surface that may be curved,
and on which each small local patch looks like a flat regular 𝑑-dimensional ball (See Figure 1.4).
The formal mathematical definition goes as follows (see Figure 1.5).
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Figure 1.4: Examples and counter-examples of 2-dimensional (sub-)manifolds in ambient di-
mension 𝐷 = 3. Manifolds cannot self-intersect (upper right), are smooth, and cannot exhibit
bifurcating points (upper left). Taken from Keenan Crane’s lecture slides.

Definition 1.1. (Submanifold as parametrized spaces) A subset 𝑀 ⊂ ℝ𝐷 is a 𝑑-dimensional
submanifold of ℝ𝐷 if for all 𝑝 ∈ 𝑀 , there exist an open neighborhood 𝑈 ⊂ ℝ𝐷 of 𝑝 and a
diffeomorphism Ψ ∶ B̊𝐷

2 (0, 1) → 𝑈 , such that Ψ(0) = 𝑝 and

𝑀 ∩ 𝑈 = Ψ(B̊𝑑
2 (0, 1) × {0}

𝐷−𝑑).

dim(𝑀) ∶= 𝑑 is called the intrinsic dimension of 𝑀 , and 𝐷 its ambient dimension.

In the definition,𝑀 behaves locally like a 𝑑-dimensional Euclidean space within ℝ𝐷. When
restricted to B𝑑

2 (0, 1) × {0}𝐷−𝑑 , the map Ψ is a local parametrization of the set 𝑀 . It provides
local coordinates for the submanifold : its inverse Ψ−1 ∶ 𝑈 → B𝑑

2 (0, 1) × {0}𝐷−𝑑 is called a chart.
A chart basically straightens the manifold locally to make it fully flat. Statistically speaking,
it yields an (unfortunately unknown) local linearization of the dataset. Another equivalent
characterization uses implicit equations, which can also be interpreted statistically.

Proposition 1.6. (Submanifolds as implicit equations / level sets) A subset 𝑀 ⊂ ℝ𝐷 is a 𝑑-
dimensional submanifold of ℝ𝐷 if and only if for all 𝑝 ∈ 𝑀 , there exists an open neighbor-
hood 𝑈 ⊂ ℝ𝐷 containing 𝑝 and a smooth map 𝐹 ∶ 𝑈 → ℝ𝐷−𝑑 such that rank(∇𝑝𝐹) = 𝐷 − 𝑑
and

𝑀 ∩ 𝑈 = {𝑞 ∈ 𝑈 ∣ 𝐹(𝑞) = 0}.

http://15462.courses.cs.cmu.edu/fall2020/lecture/meshes/slide_011
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Figure 1.5: The unit circle 𝑀 is a one-dimensional submanifold of the plane: 𝑑 = 1, 𝐷 = 2.
Nearby 𝑝 = (1, 0) : (left) 𝑀 has local parametrization Ψ(𝑡) = (cos(4𝑡/𝜋), sin(4𝑡/𝜋)) for 𝑡 ∈
(−1, 1); (middle) 𝑀 has implicit equation 𝐹(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 = 0 ; (right) 𝑀 is the graph of
𝜑(𝑦) =

√
1 − 𝑦2, 𝑦 over 𝑦 ∈ (−

√
2/2,

√
2/2).

The full rank assumption is necessary to guarantee flatness locally. Indeed, the solution set
𝑆 ∶= {((𝑢, 𝑣) ∈ ℝ2 ∣ 𝑢𝑣 = 0} ⊂ ℝ2 exhibits a crossing at (0, 0) ∈ 𝑆. Indeed, the gradient of
𝐹(𝑢, 𝑣) ∶= 𝑢𝑣 vanishes at (𝑢, 𝑣) = (0, 0), so that the above proposition does not apply.

Thinking about datasets, the function 𝐹 can be seen as encoding all the non-linear correla-
tions (or implicit dependencies) that 𝑀 exhibits nearby 𝑝 ∈ 𝑀 . The last equivalent way to see
submanifolds is through graphs of functions.

Proposition 1.7. (Submanifolds as local rotated graphs) A subset𝑀 ⊂ ℝ𝐷 is a 𝑑-dimensional
submanifold of ℝ𝐷 if and only if for all 𝑝 ∈ 𝑀 , there exist an open neighborhood 𝑈 ⊂ ℝ𝐷

containing 𝑝, a smooth map 𝜑 ∶ B̊𝑑
2 (0, 1) → ℝ𝐷−𝑑 , and an invertible affine transformation

𝐴 ∶ ℝ𝐷 → ℝ𝐷 such that

𝑀 ∩ 𝑈 = {𝐴(𝑥, 𝜑(𝑥)) ∣ 𝑥 ∈ B̊𝑑
2 (0, 1)}.

In this outlook, the affine subspace spanned by 𝐴(B̊𝑑
2 (0, 1) × {0}𝐷−𝑑 explains all the variability of

the submanifold𝑀 locally. As such, it can be seen as hidden variables parametrizing𝑀 . When
𝜑(0𝑑) = 0𝐷−𝑑 , ∇𝜑(0𝑑) = 0(𝐷−𝑑)×𝑑 and 𝐴(0𝑑 , 0𝐷−𝑑) = 𝑝, the affine space 𝑇𝑝𝑀 ∶= 𝐴(ℝ𝑑 × {0}𝐷−𝑑)
is called the tangent space at 𝑝 ∈ 𝑀 . In practice, this subspace shall not be the first 𝑑 variables
only but a rather complicated subspace which needs to be discovered.

The link between the above three equivalent definition is made via the following two theo-
rems, which are fundamental tools in differential geometry and analysis. For proofs and more,
we refer to [Rudin, 1976].
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Theorem 1.3. (Implicit FunctionTheorem) Let𝑈 is an open subset ofℝ𝐷 and 𝐹 ∶ 𝑈 → ℝ𝐷−𝑑

be a smooth map. Let 𝑞 = (𝑥0, 𝑦0) ∈ 𝑈 where 𝑥0 ∈ ℝ𝑑 and 𝑦0 ∈ ℝ𝐷−𝑑 . Assume that 𝐹(𝑞) = 0,
and that the partial differential ∇𝑦𝐹(𝑞) ∈ ℝ(𝐷−𝑑)×(𝐷−𝑑) is invertible.

Then there exist open sets 𝑈1 ⊂ ℝ𝑑 around 𝑥0, 𝑈2 ⊂ ℝ𝐷−𝑑 around 𝑦0, and a unique
smooth function 𝜑 ∶ 𝑈1 → 𝑈2 such that 𝐹(𝑥, 𝜑(𝑥)) = 0 for all 𝑥 ∈ 𝑈1.

In other words, near 𝑝, the equation 𝐹(𝑥, 𝑦) = 0 can be solved locally for 𝑦 as a smooth
function of 𝑥 .

Theorem 1.4. (Inverse Function Theorem) Let 𝑈 be an open subset of ℝ𝐷, 𝑝 ∈ 𝑈 , and
Ψ ∶ 𝑈 → ℝ𝐷 be a smooth map. Assume that the differential ∇Ψ(𝑝) is invertible.

Then there exists an open subset 𝑈 ′ ⊂ 𝑈 containing 𝑝 such that Ψ ∶ 𝑈 ′ → Ψ(𝑈 ′) is a
diffeomorphism. (i.e. Ψ is smooth, bijective, with smooth inverse Ψ−1)

In other words, if the derivative of a smooth map is invertible at a point, then the map is locally
invertible around that point, and the inverse is also smooth.

1.3.2 Non-linear sparsity
When the data lacks a clear low-dimensional parametrization, modeling “sparsity” as in Sec-
tion 1.2.2 becomes challenging. For example, in theMNIST dataset, it is unreasonable to assume
that digit structures depend on a small set of pixels or pixel groups. A natural extension be-
yond sparsity is to assume the presence of local implicit low-dimensional structures throughout
the data. These structures can be described using (sub)manifolds, which generalize curves and
surfaces to higher dimensions. The manifold hypothesis posits that:

Observations 𝑋1,… , 𝑋𝑛 lie on (or close to) an unknown submanifold 𝑀 ⊂ ℝ𝐷. (MH)

Under this hypothesis, manifold learning encompasses several tasks.

• (Standard statistical tasks) Classification, regression, density estimation, clustering, etc.

• (Geometric inference) Estimating features of the unknown manifold𝑀 , such as its dimension,
topological invariants, intrinsic geodesic distances, etc.

• (Dimension reduction) Finding a lower-dimensional representation of the data via mappings
Ψ ∶ ℝ𝐷 → ℝ𝐷′ with 𝐷′ < 𝐷. Ideally the reduced dimension 𝐷′ should be:

– comparable to dim𝑀 in order to compress information as much as possible, or
– equal to 2 of 3 to allow for visualization.

The key goal is that the transformed point cloud {Ψ(𝑋𝑖)}𝑖≤𝑛 shares “properties” with the orig-
inal data {𝑋𝑖}𝑖≤𝑛 in a sense to define problem-wise. See Figure 1.6.
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Overall, manifold learning seeks to take advantage of the manifold hypothesis, and hopes for
performances that depend on the intrinsic dimension 𝑑 rather than the ambient one𝐷 ≫ 𝑑. For
example, the rate of estimating an 𝐿-Lipschitz density on𝑀 improves from 𝑛−2/(2+𝐷) to 𝑛−2/(2+𝑑).
Similarly, the 𝑘-nearest neighbor regression rate improves from 𝑛−2/(2+𝐷) to 𝑛−2/(2+𝑑).

Remark 1.3. (Numerical application forMNIST dataset, but less depressing) Assuming that
theMNIST dataset has an intrisic dimension 𝑑 < 𝐷 and that the performance of an optimal
k-NN classifier is driven by 𝑛−2/(2+𝑑), the dimension 𝑑 corresponding to a 95% accuracy with
𝑛 = 60 000 observation is 𝑑 = 2 log(𝑛)/ log(1/0.05) − 2 ≃ 5 ≪ 784. In fact, some heuristics
lean towards a (varying) intrinsic dimension of order 15 forMNIST.

1.3.3 Empirical evidence
The manifold hypothesis must not be seen as a universal statistical formalization for describing
all modern data. Sometimes, its justification can be handwavy. However, some arguments lean
in his camp.

• (A posteriori reasoning) As described in Section 1.2, standard statistical tasks become unfeasi-
ble in high dimensions. However, common data (image, sound, text) do not fulfill coordinate
sparsity whatsoever. Thus, the most plausible explanation for the success of modern machine
learning methods on high-dimensional data is the presence of a significantly lower intrinsic
dimension. This lower intrinsic dimension is thought to simplify the learning process, making
it feasible to achieve effective learning on datasets of manageable size.

• (Pious wish) Even though the manifold hypothesis is not fulfilled properly speaking, an ap-
proximate version of it (or variants) yield a way out to be able to say something about data.
Otherwise, information-theoretic lower-bounds just say no valuable inference can be done.
In the same vein, when it comes to visualization of high-dimensional data, where some in-
formation loss in unavoidable, but where the constraints on the output are not negotiable.

• (Numerics) Certain datasets present invariance properties which actually yield submanifold
structures naturally. For instance, consider the “space of images of cats”𝑀cat within the space
of images of a given number of pixels 𝐷 ≫ 1. One can transform an image by changing its
luminosity, balance of colors, orientation, or scale. One can also change the texture of a
cat’s fur, change slightly its nose location, etc. However, all these transformations leave the
meaning of an image unchanged.
As a result,𝑀cat is invariant under certain possibly non-linear transformations of the ambient
space. Assuming that all these transformations are smooth, we have just described 𝑀cat as
(containing) a submanifold of ℝ𝐷. For sequences of images of the same object, the shooting
angle (arrow of time for videos) yields a natural latent variable parametrizing implicitly the
dataset. See Figure 1.8.
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Figure 1.6: The manifold hypothesis assumes that high-dimensional data often lies on a lower-
dimensional manifold. The 3D Swiss Roll data actually has an intrinsic 2D structure, which can
be recovered using dimensionality reduction techniques like Isomap. This algorithm tries to
capture the essential metric structure of the data by estimating its geodesic distances.
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Figure 1.7: Estimated intrinsic dimensionalities of standard image datasets. The estimators used
arise from the volume heuristic that 𝑑 ∼ log(|B𝑑

2 (𝑝, 𝑟)|)/ log(𝑟) for 𝑟 → 0, with neighborhood
measured through 𝑘-nearest neighbors. Values appear stable across values of hyperparameter
𝑘 ∈ {3, 10, 20}. Taken from [Brown et al., 2022].

Reduction

Figure 1.8: The Columbia Object Image Library (Coil20) is a semi-synthetic dataset composed
of black & white images of size 𝐷 = 128 × 128. It contains pictures of 20 different objects, each
taken from 72 poses. A non-linear dimension reduction technique (UMAP) reveals a circular
structure for each object, corresponding to the shooting angle. Here, UMAP is remarkable in
that it does not use any label information, while keeping clusters separated.
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CHAPTER 2

Linear algebra refresher

2.1 Orthogonal projectors
We will naturally be required to consider distance-minimizing points ranging over closed sub-
sets 𝐾 of ℝ𝐷. That is, for 𝑥 ∈ ℝ𝐷, the distance from 𝑥 to 𝐾 is

dist(𝑥, 𝐾) ∶= min
𝑝∈𝐾

‖𝑥 − 𝑝‖.

When 𝐾 is convex, this minimum is attained at a unique point called the projection of 𝑥 onto 𝐾 ,
and defined by

pr𝐾 (𝑥) ∶= argmin
𝑝∈𝐾

‖𝑥 − 𝑝‖.

By construction, the map pr𝐾 ∶ ℝ𝐷 → 𝐾 clearly satisfies pr𝐾 ◦ pr𝐾 = pr𝐾 . By convexity of 𝐾 , it
can be characterized geometrically through obtuse angles (see Figure 2.1). That is for all 𝑥 ∈ ℝ𝐷

and 𝑦 ∈ 𝐾 ,

𝑦 = pr𝐾 (𝑥) ⟺ For all 𝑧 ∈ 𝐾 , ⟨𝑥 − 𝑦, 𝑧 − 𝑦⟩ ≤ 0.

K

x

dist(x,K)prK(x)

z

Figure 2.1: Projection onto a closed convex subset in the plane.

25
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When 𝐾 = 𝑇 is a linear subspace, the obtuse angle condition (one-sided inequality) becomes
an orthogonality condition (equality) by symmetry. Hence, pr𝑇 (𝑥) is characterized by

For all 𝑧 ∈ 𝑇 , ⟨𝑥 − pr𝑇 (𝑥), 𝑧 − pr𝑇 (𝑥)⟩ = 0,

and by stability of 𝑇 under subtractions,

For all 𝑧 ∈ 𝑇 , ⟨𝑥 − pr𝑇 (𝑥), 𝑧⟩ = 0.

We hence obtain that pr𝑇 is a linear map, which coincides with the identity on 𝑇 and is iden-
tically equal to zero on 𝑇 ⟂. We shall take these properties as an axiomatic definition of an
orthogonal projector.

Definition 2.1. (Orthogonal projector) An orthogonal projection onto a linear subspace
𝑇 ⊂ ℝ𝐷 is a linear map pr𝑇 ∶ ℝ𝐷 → ℝ𝐷 such that:

• pr𝑇 ◦ pr𝑇 = pr𝑇 ;

• pr𝑇 (𝑥) = 𝑥 for all 𝑥 ∈ 𝑇 ;

• pr𝑇 (𝑥) = 0 for all 𝑥 ∈ 𝑇 ⟂.

From the definition, we see that Id − pr𝑇 = pr𝑇⟂ . Matricially, if 𝑑 = dim(𝑇 ) and 𝑈 ∶=
(𝑢1|… |𝑢𝑑) ∈ ℝ𝐷×𝑑 is an orthonormal basis of 𝑇 , the orthogonal projection onto 𝑇 can be written
as:

pr𝑇 (𝑥) ∶=
𝑑

∑
𝑖=1

⟨𝑢𝑖, 𝑥⟩𝑢𝑖 =
𝑑

∑
𝑖=1

𝑢𝑖𝑢⊤
𝑖 𝑥 = 𝑈𝑈 ⊤𝑥.

Hence, 𝑈𝑈 ⊤ is the matrix form of pr𝑇 in the standard basis of ℝ𝐷. It is a symmetric positive
semi-definite matrix of rank 𝑑, having eigenvalue 1 with multiplicity 𝑑 and 0 with multiplicity
𝐷 − 𝑑. The corresponding eigenspaces are 𝑇 and 𝑇 ⟂. For non-orthogonal bases, the projector
writes as follows.

Proposition 2.1. (Orthogonal projector onto a column space) If 𝑈 = (𝑢1|⋯ |𝑢𝑑) ∈ ℝ𝐷×𝑑 has
full rank 𝑑, the matrix of the orthogonal projection pr𝑇 is given by 𝑈 (𝑈 ⊤𝑈 )−1𝑈 ⊤.

Proof.

Since 𝑈 has full rank min{𝑑, 𝐷} = 𝑑, the matrix 𝑈 ⊤𝑈 ∈ ℝ𝑑×𝑑 is invertible, so that 𝐻 ∶=
𝑈 (𝑈 ⊤𝑈 )−1𝑈 ⊤ is well defined. It is straightforward to verify that 𝐻 2 = 𝐻 , meaning that 𝐻 is
a projection. Similarly, 𝐻⊤ = 𝐻 , meaning that this projection is orthogonal. Finally, we have
Im(𝐻 ) ⊂ Im(𝑈 ) = 𝑇 , and on the other hand 𝐻𝑈 = 𝑈 so that 𝑇 ⊂ Im(𝐻 ), completing the
proof.
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2.2 Singular value decomposition

2.2.1 Construction and interpretation
Recall that the orthogonal group (ℝ𝑘) in dimension 𝑘 is the group of distance-preserving trans-
formations of ℝ𝑘 letting 0𝑘 fixed. In coordinates, it can be identified to the matrix set

(ℝ𝑘) ∶= {𝑄 ∈ ℝ𝑘×𝑘 ∣ 𝑄⊤𝑄 = 𝑄𝑄⊤ = 𝐼𝑘}

The singular value decomposition asserts that any linear operator is the composition of a rigid
transform of the input space, a diagonal operator, and a rigid transform of the output space. In
signal processing it is known asKosambi–Karhunen–Loève decomposition, and in image analysis
as Hotelling transform. It will be at the core of many of the spectral methods to come.

Theorem 2.1. (Singular Value Decomposition (SVD)) Let 𝐴 ∈ ℝ𝑛×𝑚 and 𝓁 ∶= min(𝑛,𝑚).

• There exist orthogonal matrices 𝑈 ∈ (ℝ𝑛) and 𝑉 ∈ (ℝ𝑚), along with real numbers
𝑠1 ≥ … ≥ 𝑠𝓁 ≥ 0, such that

𝐴 = 𝑈𝑆𝑉 ⊤,

where 𝑆 = diag(𝑠1,… , 𝑠𝓁) ∈ ℝ𝑛×𝑚.

• The reals 𝑠1,… , 𝑠𝓁 do not depend on the choice of 𝑈 and 𝑉 . They are called the singular
values of 𝐴 and are denoted by 𝑠1(𝐴),… , 𝑠𝓁(𝐴).

• The matrices 𝑈 = (𝑢1|⋯ |𝑢𝑛) and 𝑉 = (𝑣1|⋯ |𝑣𝑚) are not generically unique.

– Vectors 𝑢𝑖’s are called left-singular vectors (or principal components)
– Vectors 𝑣𝑗 ’s are called right-singular vectors (or principal axes)

Remark 2.1. (Reduced SVD) To compress information and storage, some works do not
extend the SVD to the null space of 𝐴, but work with the so-called reduced SVD instead.
That is, if 𝑟 ∶= rank(𝐴), write 𝐴 = 𝑈𝑆𝑉 ⊤ with 𝑈 ∈ ℝ𝑛×𝑟 such that 𝑈 ⊤𝑈 = 𝐼𝑟 , 𝑉 ∈ ℝ𝑚×𝑟 such
that 𝑉 ⊤𝑉 = 𝐼𝑟 , and 𝑆 = diag(𝑠1,… , 𝑠𝑟) ∈ ℝ𝑟×𝑟 with 𝑠1 ≥ … ≥ 𝑠𝑟 > 0. Here, 𝑈 = (𝑢1|⋯ |𝑢𝑟) is
an orthogonal basis of ker(𝐴)⟂, and 𝑉 = (𝑣1|⋯ |𝑣𝑟) an orthogonal basis of Im(𝐴).

Proof.

If 𝑛 = 1 or 𝑚 = 1, the result is trivial. Otherwise, let 𝑣1 ∈ ℝ𝑚 be a unit-norm vector such that
𝑣1 ∈ argmax ‖𝑣‖=1 ‖𝐴𝑣‖, and set 𝑠1 ∶= ‖𝐴𝑣1‖.

• If 𝑠1 = 0, then 𝐴 = 0, and the result follows.

• If 𝑠1 > 0, set 𝑢1 ∶= 𝑠−11 𝐴𝑣1 ∈ ℝ𝑛, which is also a unit-norm vector. Now, complete (𝑣1) ∈
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ℝ𝑚×1 and (𝑢1) ∈ ℝ𝑛×1 to form orthonormal bases 𝑉 and 𝑈 of ℝ𝑚 and ℝ𝑛 respectively. Since
𝐴𝑣1 = 𝑠1𝑢1 by construction, we can write 𝑢⊤

1𝐴𝑣1 = 𝑠1, and hence by orthogonality of the
columns of 𝑈 ,

𝐴1 ∶= 𝑈 ⊤𝐴𝑉 = (
𝑠1 𝑡⊤
0 𝐵) ,

for some 𝑡 ∈ ℝ𝑚−1 and 𝐵 ∈ ℝ(𝑛−1)×(𝑚−1). Letting 𝑤 ∶= (𝑠1, 𝑡⊤)⊤ ∈ ℝ𝑚, we have

𝐴1𝑤 = (
𝑠21 + ‖𝑡‖2

𝐵𝑡 ) ∈ ℝ𝑛,

so that the unit vector 𝑤0 ∶= 𝑤/‖𝑤‖ satisfies

‖𝐴1𝑤0‖2 =
(𝑠21 + ‖𝑡‖2)2 + ‖𝐵𝑡‖2

𝑠21 + ‖𝑡‖2
≥ 𝑠21 + ‖𝑡‖2.

On the other hand,

‖𝐴1𝑤0‖2 = ‖𝑈 ⊤𝐴𝑉𝑤0‖2 = ‖𝐴(𝑉𝑤0)‖2 ≤ max
‖𝑣‖=1

‖𝐴𝑣‖ = 𝑠21 ,

since ‖𝑉𝑤0‖2 = ‖𝑤0‖2 = 1 . This implies that 𝑡 = 0, and hence that

𝐴 = 𝑈 (
𝑠1 0
0 𝐵)𝑉 ⊤,

for some 𝐵 ∈ ℝ(𝑛−1)×(𝑚−1). The result then follows by induction.

Remark 2.2. (Practical computation of a SVD) The SVD of a matrix 𝐴 ∈ ℝ𝑚×𝑛 can theo-
retically be computed by diagonalizing both 𝐴𝐴⊤ = 𝑈𝑆2𝑈 ⊤ and 𝐴⊤𝐴 = 𝑉𝑆2𝑉 ⊤. However,
in practice, this method is prone to numerical instability and loss of precision. Therefore,
more robust approaches based on numerical algorithms are commonly used in practice. For
instance, a more stable two-step algorithm (see [Golub and Van Loan, 2013, Section 8]) is
the following.

• (Orthogonal bidiagonalization) Using iterations of Householder reflections, first reduce 𝐴
to a bidiagonal (or tridiagonal) form. That is, compute orthogonal matrices 𝑈0 ∈ (ℝ𝑛)
and𝑉0 ∈ (ℝ𝑚) such that thematrix 𝐵 ∶= 𝑈 ⊤

0 𝐴𝑉0 is a bandedmatrix. This pre-processing
step simplifies the structure of the matrix, making the computation of singular values
more stable and efficient.

• (Iterative Algorithm for Bidiagonal Matrices) Compute the SVD of 𝐵 using an iterative
method, often based on a variant of the QR algorithm. For this, Golub and Kahan devel-
oped a specific QR-based algorithm that is particularly effective for bidiagonal or tridi-
agonal matrices. For large (𝑚, 𝑛 ≫ 1) or unbalanced matrices (𝑚 ≫ 𝑛 or 𝑛 ≫ 𝑚), a
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Figure 2.2: A geometric interpretation of the singular value decomposition 𝑈𝑆𝑉 ⊤ for 𝐴 ∈ ℝ2×2

through the transformation of the unit ball.

parallelizable divide and conquer strategy can also be used.

These computational methods yield highly stable outputs making the computation of an
SVD efficient in practice. Overall, the time complexity if of order 𝑂(𝑛𝑚min{𝑛,𝑚}) for the
full SVD (see [Cline and Dhillon, 2006]), and it reduces to 𝑂(𝑛𝑚𝑘) for the computation of
the first 𝑘 singular features only.

From the proof above, it is clear that 𝑠1(𝐴) = ‖𝐴‖op. Additionally, we see that

‖𝐴‖2𝐹 = Tr(𝐴⊤𝐴) = Tr(𝑉𝑆⊤𝑆𝑉 ⊤) = Tr(𝑆⊤𝑆) =
𝓁

∑
𝑘=1

𝑠𝑘(𝐴)2.

Corollary 2.1. For all 𝐴 ∈ ℝ𝑛×𝑚, ‖𝐴‖op ≤ ‖𝐴‖𝐹 ≤ rank(𝐴) ⋅ ‖𝐴‖op.

A SVD of 𝐴 provides a geometric interpretation of how 𝐴 acts as a linear map between ℝ𝑚

and ℝ𝑛 (see Figure 2.2). If 𝑢1,… , 𝑢𝑛 are the columns of 𝑈 and 𝑣1,… , 𝑣𝑚 are the columns of 𝑉 ,
then for all 𝑘 ≤ 𝓁,

𝐴𝑣𝑘 = 𝑠𝑘(𝐴)𝑢𝑘 and 𝐴⊤𝑢𝑘 = 𝑠𝑘(𝐴)𝑣𝑘

and these quantities are zero for 𝑘 > 𝓁. Hence, we have

𝐴 =
𝑟

∑
𝑘=1

𝑠𝑘(𝐴)𝑢𝑘𝑣⊤𝑘 ,

where 𝑟 ∶= rank(𝐴). Similarly, the null space and image of 𝐴 can be written as:

Ker(𝐴) = Span{𝑣𝑟+1,… , 𝑣𝑚} and Im(𝐴) = Span{𝑢1,… , 𝑢𝑟}.
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Note that 𝑠1(𝐴)2,… , 𝑠𝓁(𝐴)2 are the eigenvalues of𝐴⊤𝐴 and𝐴𝐴⊤, with corresponding eigenvector
bases 𝑉 and 𝑈 , respectively:

𝑠𝑘(𝐴)2 = 𝜆𝑘(𝐴𝐴⊤) = 𝜆𝑘(𝐴⊤𝐴) = 𝑠𝑘(𝐴⊤)2.

Indeed, 𝐴⊤𝐴 = 𝑉Λ𝑉 ⊤ and 𝐴𝐴⊤ = 𝑈Λ𝑈 ⊤, with Λ ∶= diag(𝑠1(𝐴)2,… , 𝑠𝓁(𝐴)2) ∈ ℝ𝓁×𝓁.

2.2.2 Variational formulations and eigenstructures
The singular structure of a matrix can be interpreted geometrically through various optimiza-
tion problems. These interpretations will be important later on when considering various risk
minimization heuristics.

Theorem 2.2. (Courant-Fischer Min-Max Theorem) Let 𝐹𝑘,𝑚 represent the set of all linear
subspaces of ℝ𝑚 with dimension 𝑘 (called the Grassmanian of order 𝑘 of ℝ𝑚). Then the 𝑘-th
singular value 𝑠𝑘(𝐴) of 𝐴 ∈ ℝ𝑛×𝑚 writes as

𝑠𝑘(𝐴) = max
𝐹∈𝐹𝑘,𝑚

min
𝑥∈𝐹
‖𝑥‖=1

‖𝐴𝑥‖ = min
𝐹∈𝐹𝑚−𝑘+1,𝑚

max
𝑥∈𝐹
‖𝑥‖=1

‖𝐴𝑥‖.

Proof.

First notice that 𝑠𝑘(𝐴)2 = 𝜆𝑘(𝐴⊤𝐴), and that for all 𝑥 , ‖𝐴𝑥‖2 = ⟨𝐴𝑥, 𝐴𝑥⟩ = ⟨𝑥, 𝐴⊤𝐴𝑥⟩. By
posing 𝑀 ∶= 𝐴⊤𝐴, the proof can be reduced to the Courant-Fischer Min-Max Theorem for
symmetric matrices, which states that for all symmetric matrix 𝑀 ∈ ℝ𝑚×𝑚,

𝜆𝑘(𝑀) = max
𝐹∈𝐹𝑘,𝑚

min
𝑥∈𝐹
‖𝑥‖=1

⟨𝑀𝑥, 𝑥⟩ = min
𝐹∈𝐹𝑚−𝑘+1,𝑚

max
𝑥∈𝐹
‖𝑥‖=1

⟨𝑀𝑥, 𝑥⟩.

The second equality is derived from applying the first one to −𝑀 . Indeed, since the eigen-
values are sorted in decreasing order, we have 𝜆𝑘(−𝑀) = 𝜆𝑚−𝑘+1(−𝑀). To establish the first
one, consider an eigenvector orthogonal basis (𝑣1,… , 𝑣𝑚) of 𝑀 , fix 𝑘 ∈ {1,… , 𝑚}, and write
𝐺𝑘 ∶= span(𝑣𝑘,… , 𝑣𝑚).

• For all 𝐹 ∈ 𝐹𝑘,𝑚, we have dim(𝐹) + dim(𝐺𝑘) = 𝑘 + (𝑚 − 𝑘 + 1) > 𝑚, so there exists a unit
vector 𝑥0 ∈ 𝐹 ∩ 𝐺𝑘. This 𝑥0 belongs to 𝐺𝑘, so it satisfies ⟨𝑥0, 𝑀𝑥0⟩ ≤ ‖ 𝑀 |𝐺 ‖op = 𝜆𝑘(𝑀). As
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a result,

min
𝑥∈𝐹
‖𝑥‖=1

⟨𝑀𝑥, 𝑥⟩ ≤ min
𝑥∈𝐹∩𝐺𝑘
‖𝑥‖=1

⟨𝑀𝑥, 𝑥⟩

≤ max
𝑥∈𝐹∩𝐺𝑘
‖𝑥‖=1

⟨𝑀𝑥, 𝑥⟩

≤ max
𝑥∈𝐺𝑘
‖𝑥‖=1

⟨𝑀𝑥, 𝑥⟩

≤ 𝜆𝑘.

• Conversely, by selecting 𝐹 = span(𝑣1,… , 𝑣𝑘), we obtain min 𝑥∈𝐹
‖𝑥‖=1

⟨𝑀𝑥, 𝑥⟩ = 𝜆𝑘, which com-
pletes the proof.
A direct consequence of the Courant-Fischer Min-Max Theorem is that the singular values

are Lipschitz continuous.

Proposition 2.2. (Weyl’s Inequality) For all 𝐴, 𝐵 ∈ ℝ𝑛×𝑚 and for all 𝑘 ∈ {1,… , 𝓁} with
𝓁 ∶= min(𝑛,𝑚), we have:

|𝑠𝑘(𝐴) − 𝑠𝑘(𝐵)| ≤ ‖𝐴 − 𝐵‖op.

Proof.

Let 𝑥 ∈ ℝ𝑚 have unit norm. Then

‖𝐴𝑥‖ ≤ ‖𝐵𝑥‖ + ‖(𝐴 − 𝐵)𝑥‖ ≤ ‖𝐵𝑥‖ + ‖𝐴 − 𝐵‖op,

and the result follows by Courant-Fischer theorem.

As we have observed, the first singular value 𝑠1(𝐴) of 𝐴 is simply ‖𝐴‖op. More generally, we
have the following characterization by small-rank approximation of 𝐴.

Theorem 2.3. (Eckhart-Young Theorem) For all 𝐴 ∈ ℝ𝑛×𝑚 and 𝑡 ∈ {1,… , 𝓁} with 𝓁 =
min(𝑛,𝑚), we have

𝑠𝑡(𝐴) = min
𝐵∈ℝ𝑛×𝑚

rank(𝐵)=𝑡−1

‖𝐴 − 𝐵‖op = ‖𝐴 − 𝐴𝑡−1‖op,

where 𝐴𝑡−1 ∶= ∑𝑡−1
𝑘=1 𝑠𝑘(𝐴)𝑢𝑘𝑣⊤𝑘 .

Proof.

Let 𝐵 be a matrix of rank 𝑡 − 1. Then 𝑠𝑡(𝐵) = 0. Using Weyl’s inequality, we get

‖𝐴 − 𝐵‖op ≥ |𝑠𝑡(𝐴) − 𝑠𝑡(𝐵)| = 𝑠𝑡(𝐴).
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Conversely, the equality is achieved when 𝐵 = 𝐴𝑡−1, since

𝐴 − 𝐵 =
𝓁

∑
𝑘=𝑡

𝑠𝑘(𝐴)𝑢𝑘𝑣⊤𝑘

has singular values 𝑠1(𝐴) ≥ … ≥ 𝑠𝑡(𝐴) ≥ 0 = … = 0. This hence gives

‖𝐴 − 𝐵‖op = 𝑠1(𝐴 − 𝐵) = 𝑠𝑡(𝐴).

As just shown, 𝐴𝑡−1 is the best approximation of 𝐴 of rank 𝑡 − 1 in operator norm.

Proposition 2.3. (Frobenius version of Eckhart-Young) For all 𝐴 ∈ ℝ𝑛×𝑚 and 𝑡 ∈ {1,… , 𝓁}
with 𝓁 ∶= min(𝑛,𝑚), we have

𝓁

∑
𝑘=𝑡

𝑠𝑘(𝐴)2 = min
𝐵∈ℝ𝑛×𝑚

rank(𝐵)=𝑡−1

‖𝐴 − 𝐵‖2𝐹 = ‖𝐴 − 𝐴𝑞−1‖2𝐹 ,

where 𝐴𝑡−1 = ∑𝑡−1
𝑘=1 𝑠𝑘(𝐴)𝑢𝑘𝑣⊤𝑘 .

In fact, 𝐴𝑡−1 is also its best approximation in any Schatten 𝑝-norm, which are defined for all
𝑝 ≥ 1 by

‖𝐴‖𝑝 ∶=
(

𝓁

∑
𝑘=1

𝑠𝑘(𝐴)𝑝)

1/𝑝

,

with ‖𝐴‖∞ = ‖𝐴‖op being the operator norm, ‖𝐴‖2 = ‖𝐴‖F the Frobenius norm, and ‖𝐴‖1 = ‖𝐴‖∗
the nuclear norm.
Proof.

The proof follows the lines of that of Eckart-Young, by summing over 𝑘 ∈ {𝑡 + 1,… , 𝓁}.

Another way to phrase this proposition using projectors is the following.

Proposition 2.4. (Eckart-Young for Principal Component Analysis) Let 𝐴 ∈ ℝ𝑛×𝑚 have
singular value decomposition 𝐴 = 𝑈𝑆𝑉 ⊤, and 𝑡 ∈ {1,… , 𝓁} with 𝓁 ∶= min(𝑛,𝑚). Then

𝓁

∑
𝑘=𝑡+1

𝑠𝑘(𝐴)2 = min
Φ∈ℝ𝑛×𝑡

Φ⊤Φ=𝐼𝑡

‖𝐴 − 𝐴ΦΦ⊤‖2𝐹 = ‖𝐴 − 𝐴𝑡‖2𝐹 ,

where 𝐴𝑡 = 𝐴𝑉∗,𝑡𝑉 ⊤
∗,𝑡 and 𝑉∗,𝑡 = (𝑣1|⋯ |𝑣𝑡) ∈ ℝ𝑛×𝑡 is composed of the 𝑡 first columns of 𝑉 .

Proof.
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Simply notice that if Φ ∈ ℝ𝑛×𝑡 , 𝐴ΦΦ⊤ has rank at most 𝑡. Furthermore, one easily checks that
the optimum 𝐴𝑡 of Proposition 2.3 writes as 𝐴𝑉∗,𝑡𝑉 ⊤

∗,𝑡 , which yields the result.

A geometric way to interpret this result is to consider the rows of 𝐴 and their projections.

Remark 2.3. (Geometric interpretation of Eckart-Young)
• As seen in Section 2.1, if Φ = (𝜙1|⋯ |𝜙𝑡) ∈ ℝ𝑚×𝑡 with Φ⊤Φ = 𝐼𝑡 , then ΦΦ⊤ ∈ ℝ𝑚×𝑚 is the
orthogonal projector onto the 𝑡-dimensional linear subspace Im(Φ) = span(𝜙1,… , 𝜙𝑡) ⊂
ℝ𝑚.

• Writing 𝐴 = (𝑎⊤1 |⋯ |𝑎⊤𝑛)⊤ for the row-wise decomposition of 𝐴, we recognize

‖𝐴 − 𝐴ΦΦ⊤‖2𝐹 =
𝑛

∑
𝑖=1

‖𝑎𝑖 − prImΦ(𝑎𝑖)‖
2

=
𝑛

∑
𝑖=1

dist(𝑎𝑖, Im(Φ))2

as the cumulated squared distances of 𝑎1,… , 𝑎𝑛 to Im(Φ)

2.3 Eigendecompositions and Rayleigh quotients

2.3.1 Eigenvalue problems
The eigenvalue problem for a symmetric matrix 𝑀 ∈ ℝ𝑚×𝑚 involves finding eigenvectors 𝜙𝑘 and
eigenvalues 𝜆𝑘 such that

𝑀𝜙𝑘 = 𝜆𝑘𝜙𝑘, ∀𝑘 ∈ {1,… , 𝑚},

where 𝜆𝑖 are the eigenvalues and 𝜙𝑖 are the corresponding eigenvectors. In matrix form, this is
expressed as

𝑀Φ = ΦΛ,

where Φ = (𝜙1|⋯ |𝜙𝑚) ∈ ℝ𝑚×𝑚 is the matrix whose columns are the eigenvectors, and Λ ∈ ℝ𝑚×𝑚

is the diagonal matrix whose diagonal elements are the eigenvalues 𝜆1,… , 𝜆𝑚. Symmetry of
𝑀 ensures that the eigenvalues are real, and that the eigenvectors corresponding to distinct
eigenvalues are orthogonal.

By homogeneity of the norm, the Courant-Fischer min-max theorem for 𝑡 = 1 can be rewrit-
ten as the Rayleigh quotient

𝜆1(𝑀) = max
𝑥∈ℝ𝑚

⟨𝑀𝑥, 𝑥⟩
⟨𝑥, 𝑥⟩

.

We recover the variational formula for the first eigenvector of a symmetric matrix 𝑀 ∈ ℝ𝑚×𝑚,
also known as the spectral theorem. Furthermore, from the method of Lagrange multipliers, one
easily sees the following.
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Proposition 2.5. (Orthodiagonalization of symmetric matrices) If 𝑀 ∈ ℝ𝑚×𝑚 is symmetric,
then a sequence 𝑣1,… , 𝑣𝑡 such that

𝑣𝑗 ∈ argmax
⟨𝑥,𝑥⟩=1

∀𝑖<𝑗, ⟨𝑣𝑖,𝑥⟩=0

⟨𝑀𝑥, 𝑥⟩

yields an orthonormal diagonalization family (𝑣1,… , 𝑣𝑡) associated to 𝜆1(𝑀) ≥ … ≥ 𝜆𝑡(𝑀).

Proof.

We will make use of the following version of Lagrange multipliers, which can be found
in [Boyd and Vandenberghe, 2004].

Theorem 2.4. (Lagrange Multiplier Theorem) Let 𝑓 ∶ ℝ𝑚 → ℝ and 𝑔 ∶ ℝ𝑚 → ℝ𝑘 be
continuously differentiable functions, with 𝑓 coercive, i.e. |𝑓 (𝑥)| −−−−→

‖𝑥‖→∞
∞. Then for all

𝑥∗ ∈ argmax
𝑥∈ℝ𝑚

𝑔(𝑥)=0

𝑓 (𝑥),

there exists a vector of Lagrange multipliers 𝜆∗ ∈ ℝ𝑘 such that

∇𝑓 (𝑥∗) = 𝜆⊤∗∇𝑔(𝑥∗).

To prove the result, note that the result is trivial for𝑚 = 1. Otherwise, take 𝑓 (𝑥) ∶= ⟨𝑀⊤𝑥, 𝑥⟩
and 𝑔(𝑥) ∶= ⟨𝑥, 𝑥⟩. Their respective gradients are ∇𝑓 (𝑥) = 2𝑥⊤𝑀 and ∇𝑔(𝑥) = 2𝑥⊤. From
Lagrange multipliers, for all 𝑣1 ∈ argmax 𝑔(𝑥)=1 𝑓 (𝑥), there exists 𝜆1 ∈ ℝ such that 𝑀𝑣1 =
2𝜆1𝑣1. Furthermore, setting 𝐴1 ∶= 𝑀 − 𝜆1𝑣1𝑣⊤1 , we see that 𝐴1𝑣1 = 0, and for all 𝑥 ∈ ℝ𝑚

such that ⟨𝑣1, 𝑥⟩ = 0, 𝐴1𝑥 = 𝐴𝑥 also satisfies ⟨𝑣1, 𝐴𝑥⟩ = 0. One can hence restrict 𝐴1 to the
(𝑚 − 1)-dimensional subspace span(𝑣1)⟂ ⊂ ℝ𝑚 and conclude by induction.

As will become clear later, we will naturally be led to consider sequential optimization prob-
lems such as that of Proposition 2.5. In matrix form, one can write 𝑉∗,𝑡 = (𝑣1|⋯ |𝑣𝑡) ∈ ℝ𝑚×𝑡 and
Λ = diag(𝜆1,… , 𝜆𝑡) ∈ ℝ𝑡×𝑡 , so that the top 𝑡 eigenstructure of𝑀 is summarized as the truncated
diagonalization

𝑀𝑉∗,𝑡 = 𝑉∗,𝑡Λ𝑡 .

Similar to Proposition 2.4, let us give a variational formulation of the eigenstructure of a
symmetric matrix.

Theorem 2.5. (Variational properties of eigenstructures) Let 𝑀 ∈ ℝ𝑚×𝑚 be a symmetric
matrix. Write 𝑣1,… , 𝑣𝑚 for an orthonormal diagonalization family of 𝑀 , with associated
eigenvalues 𝜆1(𝑀) ≥ … ≥ 𝜆𝑚(𝑀). For 𝑡 ≤ 𝑚, set 𝑉∗,𝑡 ∶= (𝑣1|⋯ |𝑣𝑡) ∈ ℝ𝑚×𝑡 . Then 𝑉∗,𝑡 solves
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the quadratic problem

𝑡

∑
𝑘=1

𝜆𝑘 = max
Φ∈ℝ𝑚×𝑡

Φ⊤Φ=𝐼𝑡

Tr(Φ⊤𝑀Φ) = Tr(𝑉 ⊤
∗,𝑡𝑀𝑉∗,𝑡)

2.3.2 Generalized eigenvalue problems
The generalized eigenvalue problem for a pair of symmetric matrices 𝑀,𝑁 ∈ ℝ𝑚×𝑚 involves
finding generalized eigenvectors 𝜙𝑘 and generalized eigenvalues 𝜆𝑘 such that

𝑀𝜙𝑘 = 𝜆𝑘𝑁𝜙𝑘, ∀𝑘 ∈ {1,… , 𝑚},

where 𝜆𝑖 are the generalized eigenvalues, and 𝜙𝑖 are the corresponding generalized eigenvec-
tors. In this formulation, 𝑁 may be assumed to be positive definite, ensuring certain desirable
properties of the problem.

Remark 2.4. (Comparing with classical eigenstructures) A few remarks are in order.

• For vectors 𝜙 ∈ ker(𝑁 )⟂, the problem likely reduces to a regular eigenvalue problem
𝑁 −1𝑀𝜙 = 𝜆𝜙, reducing it to an ordinary eigenvector equation.

• For vectors 𝜙 ∈ ker(𝑀)⟂, you can likewise write 𝜆−1𝜙 = 𝑀−1𝑁𝜙, again forming a regular
eigenvalue problem.

• Any non-zero vector 𝜙0 ∈ ker(𝑀) ∩ ker(𝑁 ) is a generalized eigenvector for any general-
ized eigenvalue. Furthermore, if 𝜙 is a generalized eigenvector with eigenvalue 𝜆, then
𝜙 + 𝜙0 is also a generalized eigenvector with the same eigenvalue.

• If 𝜙 ∈ ker(𝑀) ⧵ ker(𝑁 ), it is a generalized eigenvector with eigenvalue 0. In contrast, if
𝜙 ∈ ker(𝑁 ) ⧵ ker(𝑀) lies in the null space of 𝑁 but not 𝑀 , it cannot be a generalized
eigenvector.

In matrix form, a generalized eigenvalue problem can be expressed as

𝑀Φ = 𝑁ΦΛ,

where Φ = (𝜙1|⋯ |𝜙𝑚) ∈ ℝ𝑚×𝑚 is the matrix whose columns are the generalized eigenvectors,
and Λ ∈ ℝ𝑚×𝑚 is the diagonal matrix whose diagonal elements are the generalized eigenvalues
𝜆1,… , 𝜆𝑚. If both matrices 𝑀 and 𝑁 are symmetric, the generalized eigenvalues are real, and
the generalized eigenvectors corresponding to distinct eigenvalues are 𝑁 -orthogonal, meaning
that for distinct 𝑖 ≠ 𝑗 ∈ {1,… , 𝑚},

⟨𝑁𝜙𝑖, 𝜙𝑗⟩ = 0.
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Extending the Courant-Fischer min-max theorem, the largest generalized eigenvalue 𝜆1(𝑀,𝑁 )
can be characterized variationally as

𝜆1(𝑀,𝑁 ) = max
𝑥∈ℝ𝑚

⟨𝑀𝑥, 𝑥⟩
⟨𝑁𝑥, 𝑥⟩

.

Proposition 2.6. (𝑁 -Orthodiagonalization of symmetric matrices) If𝑀,𝑁 ∈ ℝ𝑚×𝑚 are sym-
metric, then a sequence 𝑣1,… , 𝑣𝑡 such that

𝑣𝑗 ∈ argmax
‖𝑥‖𝑁=1

∀𝑖<𝑗, ⟨𝑣𝑖,𝑁𝑥⟩=0

⟨𝑀𝑥, 𝑥⟩,

yields an 𝑁 -orthonormal family (𝑣1,… , 𝑣𝑡), which diagonalizes𝑀 with respect to 𝑁 , where
‖𝑥‖𝑁 ∶= ⟨𝑁𝑥, 𝑥⟩1/2 represents the semi-norm induced by the matrix 𝑁 .

Proof.

Follow the proof of Proposition 2.5 by induction with To prove the result, note that the result
is trivial for𝑚 = 1. Otherwise, take 𝑓 (𝑥) ∶= ⟨𝑀⊤𝑥, 𝑥⟩ and 𝑔(𝑥) ∶= ⟨𝑁 ⊤𝑥, 𝑥⟩. From Lagrange
multipliers, for all 𝑣1 ∈ argmax 𝑔(𝑥)=1 𝑓 (𝑥), there exist 𝜆1 ∈ ℝ such that 2𝑀𝑣1 = 2𝜆𝑁𝑣1. Then
set 𝐴1 ∶= 𝑀 − 𝜆1(𝑁𝑣1)(𝑁𝑣1)⊤ and conclude by induction on 𝑚 ≥ 1.

The sequence from Proposition 2.6 gives the truncated generalized eigenvalue decomposi-
tion

𝑀𝑉∗,𝑘 = 𝑁𝑉∗,𝑘Λ𝑘,

where 𝑉∗,𝑘 = (𝑣1|⋯ |𝑣𝑘) ∈ ℝ𝑚×𝑘 and Λ𝑘 = diag(𝜆1,… , 𝜆𝑘) ∈ ℝ𝑘×𝑘. Thus, similar to the classical
eigenvalue problem, one can derive a variational formulation for the generalized eigenstructure
of the symmetric matrix pair (𝑀,𝑁 ).

Theorem 2.6. (Variational properties of generalized eigenstructures) Let 𝑀,𝑁 ∈ ℝ𝑚×𝑚 be
symmetric matrices with 𝑁 positive definite. Write 𝑣1,… , 𝑣𝑚 for a 𝑁 -orthonormal diago-
nalization family of 𝑀 , with associated eigenvalues 𝜆1(𝑀,𝑁 ) ≥ … ≥ 𝜆𝑚(𝑀,𝑁 ). For 𝑡 ≤ 𝑚,
set 𝑉∗,𝑡 ∶= (𝑣1|⋯ |𝑣𝑡) ∈ ℝ𝑚×𝑡 . Then 𝑉∗,𝑡 solves the quadratic problem

𝑡

∑
𝑘=1

𝜆𝑘(𝑀,𝑁 ) = max
Φ∈ℝ𝑚×𝑡

Φ⊤𝑁Φ=𝐼𝑡

Tr(Φ⊤𝑀Φ) = Tr(𝑉 ⊤
∗,𝑡𝑀𝑉∗,𝑡),
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Remark 2.5. (Semi-definite programming) All the above optimization problems (Proposi-
tion 2.4, Theorems 2.5 and 2.6) can be cast in a unified family of optimization called semi-
definite programming (SDP) problems. For instance, from Theorem 2.6 and homogeneity,
the largest generalized eigenvalue problem of a symmetric pair (𝑀,𝑁 ) writes

𝜆1(𝑀,𝑁 ) = max
𝑥∈ℝ𝑚

Tr(𝑥⊤𝑁𝑥)=1

Tr(𝑥⊤𝑀𝑥)

= max
𝑥∈ℝ𝑚

Tr(𝑁𝑥𝑥⊤)=1

Tr(𝑀𝑥𝑥⊤)

= max
𝑋∈ℝ𝑚×𝑚

Tr(𝑁𝑋)=1
𝑋≽0

Tr(𝑀𝑋),

where the third equality follows by posing 𝑋 = 𝑥𝑥⊤. Note that the objective function
is linear, with one constraint being linear and the other one concerns the positive semi-
definiteness of the matrix variable. See [Wolkowicz et al., 2012] for an in-depth introduc-
tion to SDP.

2.4 Moore-Penrose pseudo-inverse
A matrix 𝐴 ∈ ℝ𝑛×𝑚 defines a linear map from ℝ𝑚 to ℝ𝑛, and its restriction from (Ker(𝐴))⟂ to
Im(𝐴) is an isomorphism. We can hence define its inverse from Im(𝐴) to (Ker(𝐴))⟂ ⊂ ℝ𝑛 in a
classical sense, extend it by 0 on (Im(𝐴))⟂, and then on ℝ𝑚 = Im(𝐴) ⊕ (Im(𝐴))⟂ by linearity.
This yields a unique map, denoted by 𝐴†, usually referred to as the Moore-Penrose inverse of 𝐴.

Definition 2.2. (Moore-Penrose pseudo-inverse) If 𝐴 = 𝑈𝑆𝑉 ⊤ is the singular value decom-
position 𝐴 ∈ ℝ𝑛×𝑚, then the pseudo-inverse of 𝐴 is defined as

𝐴† = 𝑉𝑆†𝑈 ⊤,

where 𝑆† ∈ ℝ𝑚×𝑛 is the diagonal matrix with

𝑆†𝑖,𝑖 =

{
𝑠𝑖(𝐴)−1 if 𝑠𝑖(𝐴) > 0,
0 otherwise.

Proof.

Straightforward based on the SVD definition.
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Proposition 2.7. (Properties of the Moore-Penrose Inverse) For all 𝐴 ∈ ℝ𝑛×𝑚, the following
properties hold:

1. 𝐴𝐴†𝐴 = 𝐴 and 𝐴†𝐴𝐴† = 𝐴†;

2. 𝐴𝐴† is the orthogonal projection onto Im(𝐴),

3. 𝐴†𝐴 is the orthogonal projection onto (Ker(𝐴))⟂

4. Im(𝐴)† = (Ker(𝐴))⟂ and Ker(𝐴)† = (Im(𝐴))⟂;

Furthermore,

5. If rank(𝐴) = 𝑚, then 𝐴† = (𝐴⊤𝐴)−1𝐴⊤;

6. If rank(𝐴) = 𝑛, then 𝐴† = 𝐴⊤(𝐴𝐴⊤)−1;

7. If 𝑛 = 𝑚 and 𝐴 is invertible, then 𝐴† = 𝐴−1.

Proof.

Left as an exercise.

In fact, 𝐴† is the unique matrix of ℝ𝑚×𝑛 satisfying the first two properties of Proposition 2.7.
Note also that point 2. is a generalization of Proposition 2.1, yielding another interpretation of
the explicit orthogonal projection matrices.

Example 2.1. (Moore-Penrose is what you need) Let us give a few examples of use of the
Moore-Penrose pseudo-inverse.

• (Solving overdetermined systems) Given an overdetermined system 𝐴𝑥 = 𝑏 with 𝐴 ∈ ℝ𝑛×𝑚

a tall matrix (𝑛 > 𝑚, more rows than columns), there is no exact solution if 𝑏 ∉ Im𝐴.
However, the least-squares solution is given by

𝑥LS ∶= 𝑀†𝑏 = argmin
𝑥∈ℝ𝑚

‖𝐴𝑥 − 𝑏‖2.

In a linear regression setting, this gives a closed form formula for the least squares esti-
mator.

• (Solving underdetermined systems) In an underdetermined system𝐴𝑥 = 𝑏 with𝐴 ∈ ℝ𝑛×𝑚 a
wide matrix (𝑚 > 𝑛, more columns than rows), there are more unknowns than equations
and hence infinitely many solutions. The Moore-Penrose pseudoinverse provides the
solution 𝑥MN with the smallest norm, that is

𝑥MN ∶= 𝐴†𝑏 = argmin
𝑥∈ℝ𝑚
𝐴𝑥=𝑏

‖𝑥‖.
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• (Projection onto a column / null space) As seen above, the pseudoinverse provides a closed
form for the orthogonal projector onto the column space of 𝑎 ∈ ℝ𝑛×𝑚, through the formula

prIm𝐴 = 𝐴𝐴†.

Similarly, the orthogonal projector onto the null space 𝐴 writes as

prKer𝐴 = 𝐼𝑚 − 𝐴†𝐴.

• (Geometry of generalized eigenvalue problems) Coming back to the generalized eigenvalue
problem 𝑀𝜙 = 𝜆𝑁𝜙 for 𝜙 ∈ ℝ𝑚 and 𝜆 ∈ ℝ, we note that

i) Any non-zero vector 𝜙 ∈ ker(𝑀) ⊕ (ker(𝑀)⟂ ∩ ker(𝑁 )) = ker(𝑀) + ker(𝑁 ) is an
eigenvector associated to the eigenvalue 𝜆 = 0

ii) For all 𝜙 ∈ ker(𝑀)⟂ ∩ ker(𝑁 )⟂,

𝑀𝜙 = 𝜆𝑁𝜙 ⇔ 𝑁 †𝑀𝜙 = 𝜆𝑁 †𝑁𝜙
⇔ 𝑁 †𝑀𝜙 = 𝜆𝜙.

The generalized eigenstructure of (𝑀,𝑁 ) hence reduces to i) the null space of 𝑀 and 𝑁 ,
and to ii) the non-zero classical eigenstructure of 𝑁 †𝑀 .
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